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SURVEY OF HASH FUNCTION: RESISTANCE TO FINDING ATTACKS

A. Arul Lawrence Selvakumar” & C. Suresh Ganadhas™

We survey theory of cryptographic hash functions, such as MD5 and SHA-1, especially their resistance to collision-Finding
attacks. We review definitions, design principles, trace genealogy of standard hash functions, discuss generic attacks, attacks
on iterative hash functions, and recent attacks on specific functions.
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1. INTRODUCTION

Hash functions, most notably MD5 and SHA-1, initially
crafted for use in a handful of cryptographic schemes with
specific security requirements, have become standard fare
for many developers and protocol designers who treat them
as black boxes with magic properties. This practice had not
been seriously challenged until 2004, since both functions
appeared to have withstood the test of time and intense
scrutiny of cryptanalysts. Starting last year, we have seen
an explosive growth in the number and power of attacks on
the standard hash functions. In this note we discuss the
extent to which the hash functions can be thought of as black
boxes, review some recent attacks and, most importantly,
revisit common applications of hash functions in
programming practice.

2. THEORY OF HasH FuncTION

In this section we introduce notation, define security
properties of hash functions, describe basic design principles
of modern hash functions and generic attacks.

2.1 Notation

The following notation used in this note is standard in the
cryptographic literature:

{0,1}" The set of all binary strings of length n.

{0,1}" The Set of all finite binary strings

A x B The set of all pairs (v, w) where ve A and w € B.
H:A  B-function H from set A to set B.

|w| the length of string w.

wl[v Concatenation of strings w and v.
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2.2 Definitions

In practice, the hash function (sometimes called the message
digest) is a fixed function that maps arbitrary strings into
binary strings of fixed length. In theory, we usually consider
keyed hash functions, as in the following

Definition: Let /, n is positive integers. We call fa hash
function with n-bit output and ¢-bit key if fis a deterministic
function that takes two inputs, the first of arbitrary length,
the second of length 7 bits, and outputs a binary string of
length n. Formally,

H {0, 1}*x {0, 1}/ — {0, 1}"

H(x, k) is an expressive shorthand for H(x, k). The key & is
assumed to be known unless indicated otherwise (to avoid
confusion with cryptographic keys, which typically
represent closely guarded secrets, the hash function’s key
is sometimes called the “index’). We distinguish between
three levels of cryptographic applications.

The definitions are framed as games that are infeasible
to win by a computationally-bounded adversary. security that
hash functions may satisfy to be useful in The words
“infeasible” and “computationally bounded” can be formali-
zed in several ways, neither of which we find entirely satis-
fying for the purpose of this note. Instead, we offer a semi-
formal semantic where we say that the problem is computa-
tionally infeasible if no program performing less than T
elementary operations can solve the problem with probability
higher than 7/2%. It corresponds to the so-called 80-bit security
level, which is currently acceptable for most applications.

Definition: Hash function H is one-way if, for random
key k and an n-bit string w, it is hard for the attacker
presented with &, w to find x so that H,(x) = w.

Definition: Hash function H is second - preimage
resistant if it is hard for the attacker presented with a random
key k and random string x to find y # x so that H,(x) = H (y).

Definition: Hash function H is collision resistant if it
is hard for the attacker presented with a random key k to
find x and y # x so that H (x) = H ().
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The last definition is noticeably harder to formalize for
keyless hash functions, which explains why theorists prefer
keyed hash functions. It is easy to see that collision
resistance implies second-preimage resistance.

Strictly speaking, second-preimage resistance and one-
wayness are incomparable (the properties do not follow from
one another), although construction which are one-way but
not second-preimage resistant are quite contrived. In
practice, collision resistance is the strongest property of all
three, hardest to satisfy and easiest to breach, and breaking
it is the goal of most attacks on hash functions.

Certificational weakness: If a good hash function must
satisfy other properties not implied by one-wayness or even
collision-resistance. For example, one would expect that
flipping a bit of the input would change approximately half
the bits of the output (avalanche property) or that no inputs
bits can be reliably guessed based on the hash function’s
output (local one-wayness). Failure to satisfy those or similar
properties, such as infeasibility of finding a pseudo-collision,
free-start collisions are called a certificational weakness.
Presence of certificational weaknesses does not amount to
a break of a hash function but is enough to cast doubt on its
design principles.

2.3 Generic Attacks

A generic attack is an attack that applies to all hash functions,
no matter how good they are, as opposed to specific attacks
that exploit flaws of a particular design. The running time
of generic attacks is measured in the number of calls to the
hash function, which is treated as a black box.

It is not dificult to see that in the black box model the
best strategy for inverting the hash function and for finding
a second preimage is the exhaustive search. Suppose the
problem is to invert H,, i.e., given w, k find x, so that H (x)
= w, where k is (-bit key and w is an n-bit string. The only
strategy which is guaranteed to work for any hash function
is to probe arbitrary chosen strings until a preimage of w is
hit. For a random function H it would take on average 2"
evaluations of H. In the black-box model the problem of
finding a second preimage is just as hard as inverting the
hash function.

Finding collisions is a different story, the one that goes
under the name of the “birthday paradox.” The chances that
among 23 randomly chosen people there are two who share
the same birthday are almost 51%. The better than even odds
appear to be much higher than the intuition would suggest,
hence the name. Of course, there is nothing paradoxical
about the fact-between 23 people there are 253 pairs, each
of which has a one-to-365 odds of being a hit. The reason
why the result appears counter-intuitive is because your
chances of finding among 22 people somebody with the
same birthday as yours to split the cost of the birthday party

are strongly against you. This explains why inverting a hash
function is much more dificult than finding a collision.

More careful analysis of the birthday paradox shows
that in order to attain probability better than 1/2 of finding
a collision in a hash function with n-bit output, it suffices to
evaluate the function on approximately 1.2 2”2 randomly

chosen inputs (notice that [1.2 /365 |=123).

The running times of generic attacks on different
properties of hash functions pro vide upper bounds on
security of any hash function. We say that a hash function
has ideal security if the best attacks known against it are
generic. Cryptanalysts consider a primitive broken if its
security is shown to be less than ideal, even though it may
still be sufficient for some applications. The generic attacks
are summarized in Table 1.

Table 1
Complexity of Generic Attacks on Different Properties of
Hash Function

Property Ideal security
One way ness 2"—1
Second Pre image — resistance 2"—1
Collision — resistance 1.2.2m2

2.4 Constructions

Provably secure constructions of cryptographic hash
functions consist of two ingredients, which may be studied
independently of each other. The first component is a
compression function that maps a fixed-length input to a
fixed-length output.

The second component of a construction is a domain
extender that, given a compression function, produces a
function with arbitrary-length input.

Compression function: From the theorist’s point of
view, a one-way function is the most basic primitive, from
which many other cryptographic tools can be derived. A
seminal result due to Simon [Sim98] provides strong
evidence that collision-resistant hash functions cannot be
constructed based on one-way functions. Instead, we design
collision-resistant hash functions based on another
cryptographic primitive - a block cipher.

A block cipher is a keyed permutation

E: {0, 1}"x {0,1}*— {0, 1}

Technically, a block cipher already compresses its input - it
maps k+ n to n bits. As is, however, the block cipher is not
even one-way: to invert Eon w, fix any key k and decrypt w
under this key. If w decrypts to x, then E(k;, x) = w.
Nonetheless, as many as 12 simple constructions based on
a block cipher result in a collision-resistant compression
function [BRS02] two schemes most often used in hash
functions are the following:
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Davies-Meyer cH(x, y) = Ev(x) €y

Miyaguchi-Preneel: H(x,y) = E (y) e x € y.

Proofs of security of these and similar block cipher-
based constructions assume that the underlying cipher are
in distinguishable from a certain abstraction, called the ideal
cipher, which goes beyond the standard security
requirements for block ciphers.

2.5 Domain Extender

The domain extender is a generic construction that
transforms a compression function with fixed-length input
into a hash function with arbitrary input. The simplest and
most commonly used domain extender is called the Merkle-
Damgard construction and it works as follows:

Given: Compression function C: {0, 1}" x {0, 1}" >
{0, 1}"; n-bit constant I'V.

Input: message M

1. Break M into m-bit blocks M, ..., M, padding
2. Let M, + 1 be encoding of |M|;

3. Let h0= 1V;

4. Fori=1tok+1lethi=C(hi, M),

5. Output £,_,.

The construction iterates the compression function C: the
output of C, together with the next block of the message,
becomes the input to the next application of C. The hash of
the last block, which contains an encoding of the length of
the message, is the hash of the entire message.

The temporary storage of the compression function’s
output, £, is called the chaining variable or the internal state
(see Figure 1).

M, M; Mk Mi+1
—» | — | —

Figure 1: Merkle-Damgard Construction

There is a certain flexibility in the first two steps of the
Merkle-Damgard construction. Any encoding will do as long
as it satisfies the following three conditions:

— Misencoded as an integral number of m-bit blocks;

—  The encoding is collision-free;

—  The length of M is encapsulated in the last block.

The Merkle-Damgard construction is compatible with
streaming APIs, where a message is fed one block at a time

into a cryptographic search engine. Its length need not be
known until the last block becomes available. On the other
hand, updating even one bit of the message may trigger
recomputation of the entire hash. If the compression function
is collision-resistant, so is the resulting construction.
However, the Merkle-Damgard construction produces a
function with many structural properties, creating a number
of unexpected vulnerabilities as illustrated in Section 4.

In fact, the Merkle-Damgard construction is the single
most important reason why it is wrong (dangerous, reckless,
ignorant) to think of hash functions as black boxes. The
iterative construction was designed to meet a very modest
goal that of extending the domain of a collision-resistant
function, and should not be expected to provide security
guarantees beyond that.

2.6 Algebraic Hash Function

Collision —resistant hash function can be based on the same
hardness assumptions as public key cryptography. Such
functions are largely confined to theoretical papers, being
algebraic and therefore orders of magnitude slower than ad-
hoc or block cipher-based hash function. The main reason
why we discuss algebraic hash functions in this note is to
correct the popular reference [Sch95, Section 18.12], which
does not give two standard constructions and describes two
incorrect ones instead. Discrete logarithm problem in group
G of prime order p is to solve the equation g*= & for x given
two group elements g, 4 € G. Discrete-logarithm based hash
function can be designed as follows: H (x, y) = g'I?,

Where g, h are elements of a group where the discrete
logarithm problem is hard. It is easy to verify that if the
inputs to H are defined modulo p, finding a collision amounts
to solving the discrete logarithm problem.

The RSA - based hash function is defined for arbitrary
strings. If N = PQ is product of two unknown primes, and
g # 1 is an element co-prime with N, then the function
defined as H (x) = g*mod N is collision-resistant under the
hardness of factoring N.

3. PracticaL HasH FuNcTIONS

This section covers hash functions that are most likely to
be used in practice: MDS5, SHA-1, SHA-256, Whirlpool and
their close relatives. For their detailed description we refer
the reader to the documents issued by standardization bodies.

MD4 and MDS5: MD4 was proposed by Ron Rivest in
1990 and MD5 [Riv92] followed shortly thereafter as its
stronger version. Their design had great influence on
subsequent constructions of hash function. The letters “MD”
stand for “message digest” and the numerals refer to the
functions being the fourth and fifth designs from the same
hash-function family. MD5 follows the design principles
outlined in Section 2.4: its compression function is
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(implicitly) based on a block-cipher and the domain extender
is the Merkle-Damgard construction.

The compression function of MD35 operates on 512-bit
blocks further subdivided into sixteen 32-bit sub blocks. The
size of the internal state (i. e., the chaining variable) and its
output are both 128 bits. One important parameter of the
compression function is the number of rounds —the number
of sequential updates of the internal state. The compression
function of MDS5 has 64 rounds organized in an unbalanced
Feistel network (for comparison, DES is a Feistel cipher
with 16 rounds) each using a 32-bit message sub block to
update the internal state via a non-linear mix of boolean
and arithmetic operations. Every 32-bit sub block is used
four times by the compression function.

MDS5 allocates 64 bits in the last block to encode the
message’s length and it pads the message so that its length
is congruent to 448 modulo 512. The padding procedure
expands the message by at least one bit, so the largest
message fitting into one block is 447 bits.

SHA-0 and SHA-1 The Secure Hash Algorithm (SHA)
was initially approved for use with the Digital Signature
Standard (DSS) in 1993 [NIST00]. Two years later the
standard was updated to become what is currently known
as SHA-1 [NISTO95]. The first version of SHA is referred in
the cryptographic literature as SHA-0, although it has never
been its official designation. SHA-1 differs from SHA-0 by
exactly one additional instruction, which is nonetheless
extremely important from the cryptanalytic perspective,
Since there were no reasons to prefer the initial version of
the standard, SHA-1 replaced SHA-0 in all but most
antiquated applications.

SHA-1 is closely modeled after MD4, taking some cues
from MDS5. It uses the same padding algorithm, breaking
the message into 512-bit blocks and encoding the length as
a 64-bit number. The size of its internal state and its output
length are 160 bits, which is substantially longer than MD5’s
128 bits. Although its round functions are simpler and less
varied than those of MDS5, there are more of them—S80
instead of 64. SHA-1 uses a more complex procedure for
deriving 32-bit sub blocks from the 512-bit message. If one
bit of the message is fliipped, more than a half of the sub
blocks get changed It is interesting to note that the cipher,
which operates inside the compression function, has never
been given any officially recognition. It did not stop the
cryptanalytic community, which dubbed the cipher
SHACAL, from isolating and studying it. SHA-224, 256,
384, 512. The new standard issued by NIST in August 2002
adds three members to the SHA family of functions
[NISTO2], followed by one more in 2004.

The connections between the NIST-approved functions
are following: SHA-256 and SHA-512 have similar designs,
with SHA-256 operating on 32-bit words and SHA-512
operating on 64-bit words. Both designs bear strong

resemblance to SHA-1, although they are much closer to
each other than to their common predecessor. SHA-384 is
a trivial modification of SHA-512, which consists of
trimming the output to 384 bits and changing the initial value
of the chaining variable. A change notice issued in February
2004 defined SHA-224 as a truncated version of SHA-256
with a different initial value. The new hash function is to
provide 112-bit level of security, on par with triple DES.

The most important difference between the three new
functions and SHA-1 is the new message schedule (procedure
for deriving sub blocks from one block of the message).

Whirlpool: Whirlpool was designed by Paulo Barreto
and Vincent Rijmen (the latter is of AES’s fame) and submit-
ted in response to the call for cryptographic primitives issued
by NESSIE (New European Schemes for Signature,
Integrity, and Encryption) in 2000. Whirlpool was selected
together with SHA-256,384,512 as part of NESSIE’s
portfolio.

Whirlpool’s design combines the Merkle-Damgard
domain extender with a blockcipher based compression
function. The blockcipher is a variant of AES, which is
radically different from SHACAL, and it is converted into
a compression function using the Miyaguchi-Preneel
construction.

Whirlpool does not target any particular architecture,
although 32- or 64-bit processors permit some optimizations
impossible in 8-bit implementations.

We summarize in Table 2 parameters of the standard
hash functions. Table 3 presents performance of some of
the hash functions on selected processors compiled from
two studies [P+03, NMO2]. The first report considered
portable C implementations of the hash functions limiting
optimization to a choice between different combinations of
the compiler’s options. The second study undertook a
painstaking optimization of the assembly language code for
Pentium III, taking advantage of the MMX registers and
carefully orchestrated pipeline scheduling.

Table 2
Standard Hash Functions in a Glance

Name Block Word Output  Rounds Year of the
Size Size Size standard
MD4 512 32 128 48 1990
MD5 512 32 128 64 1992
SHA-0 512 32 160 80 1993
SHA-1 512 32 160 80 1995
SHA-224 512 32 224 64 2004
SHA-256 512 32 224 64 2002
SHA-384 1024 64 384 80 2002
SHA-512 1024 64 512 80 2002
Whirlpool 512 - 512 10 2003
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Table 3
Performance in Cycles/Byte

Name PIII C, XeonC, PllIAssembly,
Visual C 6.0 gee3.2 MASM

MD4 4.8 6.4 -
MD5 7.2 9.4 3.7
SHA-1 19 25 8.3
SHA-256 56 39 20.6
SHA-512 80 135 40.2
Whirlpool 82 112 36.5

4. GENERIC ATTACKS

In this section we discuss generic attacks against schemes
that use iterative hash functions based on the Merkle-
Damgard construction, highlighting pitfalls of using such
functions as black boxes, and review specific attacks against
standard hash functions.

Black box abstraction: Software engineers and
researchers alike are trained to re duce complexity of
systems by thinking of the systems’ components as “black
boxes” modules with well-defined interface, separating
functionality from Implementation details. It is also common
to treat programming objects as real-life models of
mathematical abstractions. For instance, we use the double
type to represent real numbers, or the rand() function as a
source of randomness. This pragmatic approach is
productive as long as its limits are well understood.

To continue our example, double represents reals with
a certain machine-dependent precision and rand ( ) from
the standard library has a relatively short cycle—both facts
are well documented and known to most C/C++ developers.

It is convenient to think of a concrete hash function
such as SHA-1 as a real-world instantiation of a random
function. One important characteristic of a random function
is that the only way to learn its value on some input is to
evaluate the function on precisely this input. As we will show
in this section, this is not the case for iterative hash functions.
We stress that the generic attacks in this sections are attacks
against schemes that uncritically use iterative hash functions,
not against hash functions themselves.

5. SPECIFIC ATTACKS

Table 4 summarizes attacks on standard hash functions that
appeared in the public literature. Some of the attacks are
trivial to interpret, as they expose collisions in the hash
function, some call for more definitions.

Definition: We say that (4, x) and (%, X" ) is a pseudo-
collision for compression function

C {0, 1}n x {0, 1}m — {0, 1}n

if C(h,x)=C(h ,x" )and (h,x) # (W, x").

A pseudo-collision for a compression function C invalidates
the proof of the Merkle Damgard construction (Section 2.4)
that states that if the compression function C is collision-
resistant, so is the hash function H based on C. It does not,
however, translate into an attack on H, since the attacker
does not directly control the value of the chaining variable

Definition: We say that (h, x) and (&', X" ) is a free-start
collision for compression function

C:{0, 1}"x {0, 1} — {0, 1}"
if C(h,x)=C(h',x" )and x # x" .
Notice that a free-start attack is stronger than a pseudo-
collision attack, since the attacker is forced to use the same
value of the chaining variable for both colliding arguments
in the free-start attack. This attack still falls short of a
collision-finding attack on C-based hash function H for the
same reason as before—the Merkle-Damgard paradigm
fixes the initial value of the chaining variable, which is
unlikely to coincide with the value anticipated by the
adversary, and subsequent values of the chaining variables
cannot be easily chosen either.

Definition We say that x and x” is a near-collision for
the hash function H if the Hamming distance between H(x)
and H(x") is small.

Once again, this attack is not as strong as a collision
finder, although it sometimes serves as a precursor to a full
attack (as was the case of SHA-0). Reduced-round hash
functions are weaker primitives that share important
characteristics with their full-round variants. Cryptanalysts
often attack reduced-round hash functions first since such
attacks may provide insight into potential attack vectors and
can be tested using modest computational resources.

Table 4
Attack on Standard Hash Function

Hash Attack
Author Type Complexity  Year
MD4 Dobbertin Collision 22 1996
Wangetal Collision 28 2005
MD5 Dan boer Pseudo collision 216 1993
Dobbertin Free start 2% 1996
Wangetal Collision 2% 2005
SHA-O0 Chadaud Collision 20 1998
Biham Near collision 240 2004
Biham Collision 251 2005
Wangetal Collision 2% 2005
Sha-1 Biham Collision 40 round  Very low 2005
Biham Collision 58 round 2% 2005
Wangetal Collision 58 round 23
Wangetal Collision 26 2005
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6. CONCLUSION

Research in cryptographic hash function has been active and,
in recent years, explosive. We will undoubtedly see new
proposals, tweaks of existing design, and attack in years to
come.
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